1. If A∩B = Ï• , prove that
a) A⊆ B̅
Solution:
We
have
A∩B
= Ï•
Now,
x∈ A
⇒ x∉ B [∵ A∩B = Ï• ]
⇒ x∈ B
since x∈ A ⇒ x∈ B
∴ A⊆ B̅ proved
b)
B∩A̅ = B
Solution:
We
have,
A∩B
= Ï•
B∩A̅
= {x: x∈ B and x∈ A̅
}
=
{x: x∈ B and x∉ A}
=
{x: x∈ B} [∵ A∩B = Ï• ]
=
B
∴ B∩A̅ = B
c) A∪B̅ = B̅
Solution:
Since
A∩B = Ï• ⇒ x∈ A ⇒ x∉ B
Now,
A∪B̅ = {x: x∈ A or x∈ B̅}
= {x: x∉ B or x∈ B̅}
= {x : x∈ B̅
or x∈ B̅}
= { x : x∈ B̅ }
= B
∴ A∪B̅ = B
2. If A⊆B, prove that
a)
B̅ ⊆ A̅
Solution:
Let x∈ B̅ then
x∈ B̅ ⇒ x∉ B
⇒ x∉ A [∵ A⊆ B]
since x∈ B̅ ⇒ x∉ A
∴ B̅ ⊆ A̅ proved.
b) A∪B = B
Solution:
Since
A⊆B ⇒ x∈ A ⇒ x∈ B
Now,
A ∪ B = {x: x∈ A or x∈ B}
= {x: x∈ B or x ∈ B}
= {x: x∈ B}
= B
∴ A∪B = B
c)
A∩B = A
Solution:
Since
A⊆B ⇒ x∈ A ⇒ x∈ B
Now,
A =
{x: x∈ A }
= {x: x∈ A and x ∈ A}
= {x: x∈ A and x∈ B}
= A∩B
∴ A∩B = A Proved.
3. Prove that
a)
B – A = B ∩ A̅
Proof
:
B
– A = {x: x∈ B and x∉ A}
=
{x: x∈ B and x∈ A̅ }
=
B∩ A̅
∴ B – A = B∩ A̅ Proved.
b)
A – B̅ = A∩B
Proof:
A
– B̅ = {x: x∈ A and x∉ B̅}
=
{x: x∈ A and x∈ B}
=
A∩B
∴ A – B̅ = A∩B Proved.
c) A – B = B̅ – A̅
Proof:
A
– B = {x: x∈ A and x∉ B}
=
{x : x∉ A̅ and x∈ B̅}
=
{x: x∈ B̅ and x∉ A̅}
=
B̅ – A̅
∴ A – B = B̅ – A̅ Proved.
0 Comments