1. If A∩B = Ï• , prove that

a) A

Solution:

We have

A∩B = Ï•

Now,

x∈ A ⇒ x∉ B       [∵ A∩B = Ï• ]

          ⇒ x∈ B

since x∈ A ⇒ x∈ B

 A   proved

 

b) B∩A̅ = B

Solution:

We have,

A∩B = Ï•

B∩A̅ = {x: x B and x∈ A̅ }

          = {x: x∈ B and x∉ A}

          = {x: x∈ B}    [∵ A∩B = Ï• ]

          = B

B∩A̅ = B


c) AB̅ = B̅

Solution:

Since A∩B = Ï• x A x B

Now,

AB̅ = {x: x A or x B̅}

         = {x: x B or x B̅}

         = {x : x  or x B̅}

         = { x : x B̅ }

         = B

AB̅ = B

2. If AB, prove that

a) B̅

Solution:

Let x B̅ then

x x B

           x A     [ A B]

since x x A

    proved.

 

b) AB = B

Solution:

Since AB x A x B

Now,

A B = {x: x A or x B}

         = {x: x B or x B}

         = {x: x B}

         = B

AB = B


c) A∩B = A

Solution:

Since AB x A x B

Now,

A      = {x: x A }

= {x: x A and x A}

         = {x: x A and x B}

         = A∩B

A∩B = A        Proved.

 

3. Prove that

    a) B – A = B ∩ A̅

         Proof :

         B – A = {x: x B and x A}

                  = {x: x B and x A̅ }

                  = B∩ A̅

     B – A = B∩ A̅     Proved.

   

    b) A – B̅ = A∩B

         Proof:

         A – B̅ = {x: x A and x B̅}

                  = {x: x A and x B}

                  = A∩B

         A – B̅ = A∩B          Proved.

   

   c) A – B = B̅ – A̅

         Proof:

         A – B = {x: x A and x B}

                  = {x : x A̅ and x B̅}

                  = {x: x B̅ and x A̅}

                  = B̅ – A̅

         A – B = B̅ – A̅        Proved.