Important points on Set
Subset
A⊆ B is defined as x∈ A⇒ x ∈ B.
If
x ∈ A ⇒ x∈ B then A⊆B.
Equal
set
If
A⊆B and B⊆A then A = B.
Union of sets
A∪B
= {x: x
∈ A or x∈
B}
x∈ A∪B ⇒ x ∈ A or x∈ B.
but x∉ A∪B ⇒ x∉ A and x∉
B.
Intersection of sets
A∩B = {x: x∈ A and x∈ B}
x∈ A∩B ⇒ x ∈ A and x∈ B.
but x∉ A∩B ⇒ x∉ A or x∉
B.
Difference of sets
A – B = {x: x∈ A and x∉ B}
B – A = {x: x∈ B and x ∉ A}
Complement of set
A̅ = { x: x ∈ U and x∉ A}
= {x : x ∉
A}
* x∈ A̅ ⇒ x∉ A
* x∈ A ⇒ x∉ A̅
Symmetric Difference
*Union of A – B and B – A
*Denoted by A∆B
∴
A∆B = (A – B)∪(B
– A)
= {x:
x ∈ A – B or x ∈ B – A}
∴
x ∈ A∆B ⇒ x∈ A – B or x∈ B – A
∴ x ∈ A∆B ⇒ x∉ A∩B
* x ∈
A and x∉ A ⇒ x ∈ Ï•
* x∈ A
or x∈ A̅ ⇒ x∈ U
0 Comments