Important points on Set


Subset

A B is defined as x  A⇒ x   B.

If x ∈ A ⇒ x∈ B then A⊆B.

Equal set

If A⊆B and B⊆A then A = B.

Union of sets

A∪B = {x: x A or x B}

xAB x A or x B.

but x AB x A and x B.

Intersection of sets

A∩B = {x: x A and x B}

xAB x A and x B.

but x AB x A or x B.

Difference of sets

A – B = {x: x A and x B}

B – A = {x: x B and x A}

Complement of set

A̅ = { x: x U and x A}

= {x : x A}

* x x A

* x A x


Symmetric Difference

*Union of A – B and B – A

*Denoted by A∆B

A∆B = (A – B)(B – A)

            = {x: x A – B or x B – A}

x A∆B x∈ A – B or x∈ B – A

∴ x ∈ A∆B ⇒ x∉ A∩B

* x A and x A x Ï•  

* x A or x⇒ x∈ U